A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces
Authors
Abstract:
In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$
similar resources
a fixed point approach to the hyers-ulam stability of an $aq$ functional equation in probabilistic modular spaces
in this paper, we prove the hyers-ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$
full textHyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach
In this paper, we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method.
full textHyers-Ulam-Rassias stability of a composite functional equation in various normed spaces
In this paper, we prove the generalized Hyers-Ulam(or Hyers-Ulam-Rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.
full textdirect and fixed point methods approach to the generalized hyers–ulam stability for a functional equation having monomials as solutions
the main goal of this paper is the study of the generalized hyers-ulam stability of the following functionalequation f (2x y) f (2x y) (n 1)(n 2)(n 3) f ( y) 2n2 f (x y) f (x y) 6 f (x) where n 1,2,3,4 , in non–archimedean spaces, by using direct and fixed point methods.
full textHyers-Ulam-Rassias Stability of Orthogonal Quadratic Functional Equation in Modular Spaces
In this paper, we study the Hyers-Ulam-Rassias stability of the quadratic functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y), x⊥y in which ⊥ is orthogonality in the sens of Rätz in modular spaces.
full textMy Resources
Journal title
volume 4 issue 2
pages 89- 101
publication date 2013-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023